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Figure 1: TacTalk is a conversational system for personalizing haptic feedback. Using LLMs, it maps natural-language user queries to low-level

software parameters, enabling users to personalize haptic experiences in real time.

Abstract

Haptic experiences are highly personal, but despite prior work ex-
ploring interfaces enabling personalization, we don’t know what
process drives the personalization of haptics. To enable a study of
this process, including users’ mental models and vocabularies, we
introduce TacTalk, a conversational system enabling real time tun-
ing of virtual haptic experiences. We present an application using
TacTalk in a popular racing video game, Forza Horizon 5. Through
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an empirical study, we find that tracking user preference profiles
may improve TacTalk’s ability to cater to individual differences, and
that TacTalk is more usable than an existing slider-based personal-
ization tool. A thematic analysis of participant interviews reveals
an archetypal process of conversational personalization - starting
with real-world experiences and domain-specific metaphors, then
subsequently inspecting specific aspects of the experience including
in-game events and the game controller.
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1 INTRODUCTION

Researchers have established that individual differences exist in
the perception and interpretation of haptic feedback [17, 40, 73,
92, 93, 104]. While certain experiences aim to simulate reality and
thus cannot cater to individual preferences, personalized haptic
feedback can benefit applications ranging from mobile applications
to education environments and multisensory video games.

Prior work has explored different strategies enabling the per-
sonalization of haptic feedback, including design tools that allow
users to visualize and design their own haptic effects [86, 89, 98],
as well as morphing algorithms that allow users to draw upon
pre-existing libraries of haptic effects to produce predictable and
perceivable compound effects [18]. Seifi [87] classifies personaliza-
tion approaches into three categories: choosing (selecting haptic
effects from a larger collection), tuning (manipulating a given haptic
effect based on perceivable parameters), and chaining (composing
multiple smaller haptic effects to obtain a compound sensation).
While choosing is the most common, it is least preferred; tuning is
most preferred [88].

While single parameter tuning (e.g., volume, intensity) is eas-
ily deployed, navigating more complex haptic parameter spaces
can be difficult. Previous work has explored language to define
semantic dimensions mapping to technical parameters, including
psychophysics studies aiming to understand perceived tactile di-
mensions for various materials [30, 66] and semantic meaning of
effects [34] and higher level descriptions of the experience of sensa-
tions [33, 65]. Zheng and Morrell [111] found a negative correlation
between user attention and affect, recommending an intensity con-
trol to account for individual preferences. Personalization interfaces
have been explored [88], with haptic effects organized by different
organizational schema [90] but progress has been limited. Some
question the existence of a constant tactile language altogether [35].
Ultimately, the language around tactile feedback is multi-faceted,
varied, and often vague.

To support vague, varied language, we turn to Large Lan-
guage Models (LLMs). Recently, LLMs have shown strong ca-
pabilities of producing high-quality natural language outputs
[36, 53, 67, 69, 100], which can be extended to multimodal applica-
tion contexts through the concept of user interface transducers [8].
LLMs can keep track of context and can even understand the mean-
ing of seemingly vague natural language queries [4, 29, 53]. This
presents the opportunity of using LLMs to map user descriptions
of haptic feedback derived from a diverse and non-standardized vo-
cabulary to underlying control parameters. By interacting entirely
through natural language, LLMs further enable opportunities to
study individual language surrounding touch and store profiles for
individualized feedback.

In this paper, we introduce TacTalk, a novel application of LLMs
as a natural language transducer to study conversational personal-
ization of haptic experiences. We explore TacTalk in the context of a
car-racing video game, Forza Horizon 5, with 17 haptic parameters

for PS5 DualSense controller.We first conduct a technical evaluation
of TacTalk to tune the system and check for consistency. We then
conduct a user study (N=11) comparing TacTalk and a slider-based
visual interface, finding TacTalk has significantly higher usability
scores and lower perceived mental demand, success, effort and frus-
tration ratings. TacTalk showed consistency in terms of its ability
to map technical parameters to a given world model, which we
demonstrate may be formed using user profiles or even the baseline
GPT-4o model [67] without providing additional context. Our pri-
mary contribution is a thematic analysis of user interactions with
TacTalk that reveals insights into how people personalize haptic
experiences. We find that personalization follows a unidirectional,
few-shot (less than five queries) process; users employ real-world
knowledge of haptics both when describing preferences and when
evaluating TacTalk’s outputs; domain-specific metaphors are specif-
ically favoured over generic language when describing preferences.
We conclude with guidelines for conversational and personalization
interfaces involving haptics.

2 RELATEDWORK

2.1 User Experience and Haptic Experience

User experience (UX) depends on individual context, including the
user’s internal state of mind, the environment, individual differ-
ences [28]. It also varies over time - a user’s perception of UX may
be shaped based on previous interactions with a product, ongoing
use, and can even change after the interaction concludes [7, 49].
There are various approaches towards modeling user preferences
for UX personalization, including recommender systems for person-
alizing website widgets [39], conceptual user models constructed
using long-term usage data for augmented reality training systems
[70], and domain- and device-independent UX models [32].

Recently, researchers have started to connect UX research to
haptics. Studies have found that measures of UX can increased with
haptic feedback, e.g., with movies [59] and video games [91]. The
personal nature of UX and haptics is increasingly recognized in
this line of work. The Haptic Experience (HX) model specifically
aims to address experiences involving haptic technologies, and
highlights personalization as a critical factor [41]. Although the HX
model has been further developed with the goal of measuring HX
[5, 83], they focus on the experiential factors, not personalization.
Other efforts have looked into the design parameters specifically
to support customization, identifying spatial density and intensity
as independent parameters to enable personalization [82]. While
an important development, this work focuses on technical design
parameters rather than semantic or natural language from users.

2.2 Personalizing Haptic Feedback

Parallel to work formalizing the concept of HX, researchers have
studied personalization of haptic feedback. Tools supporting such
personalization make use of a wide variety of methods, includ-
ing relative ranking and refinement using machine learning [56],
choosing from existing libraries of effects [90, 98], drawing [89, 98],
morphing and chaining [18] and even voice-based design involving
sound-symbolic language [21, 60].

In addition to tools enabling haptic feedback personalization, pre-
vious work has also attempted to characterize individual differences
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in the perception of touch. These differences can be physiological
or involve information processing. For instance, haptic perception
declines with age, with some regions of the body more affected
than others [92, 93]. Similarly, physiological age- and sex-related
factors such as differences in physical structure and stiffness of the
skin, and hand size also influence the perception of touch [52, 104].
Some of these findings have been embedded into adaptive systems
that use age in their model, predicting whether a user would detect
a wearable vibration [9].

We find similar results when looking at higher level percep-
tion based on physiological and information processing factors.
For instance, the Need For Touch (NFT) scale [73] consists of two
dimensions: autotelic and instrumental need for touch, based on
information processing. Physiological factors have been reported
on for vibrations on the hand [55], and the skin’s vibration charac-
teristics [40].

2.3 Haptic Vocabularies

Language is a key factor of interest in the study of individual differ-
ences in haptic perception. Works focusing on both personalized
haptics [87] as well as HX from a design perspective [85] acknowl-
edge the importance of language, especially affective language in
describing haptic experiences.

Studies have attempted to analyze the different perceivable di-
mensions of haptic stimuli based on psychophysical methodolo-
gies. For instance, Hollins et al. [30] ran a study to isolate com-
mon perceivable dimensions of tactile surface texture, finding a
three-dimensional space with dimensions roughness-smoothness,
hardness-softness, and compressional elasticity. Okamoto et al. [66]
conducted a similar analysis with texture perception, finding five
overall dimensions of tactile perception: roughness-smoothness
(both macro and fine), hardness-softness, coldness-warmness, and
friction. Kaneda et al. [38] investigated the relationship between
physical attributes and onomatopoeic language when pressing a
soft object, finding interactions between the visuo-tactile proper-
ties of an object and the onomatopoeia used to describe it. Tools
such as VibViz [90] enable choosing vibrotactile effects based on
different facets of language, including metaphors, physical filters,
emotional filters, and usage example filters. Voodle [60] enables
user customization of haptic feedback in the form of the motion of
a 1-degree-of-freedom robot through sound-symbolic language like
vocalizations and onomatopoeia like. boom, woof, and ding. Weird-
ing Haptics [21] enables designers to vocally sketch vibrations to
rapidly prototype haptics when designing in VR. However, the use
of haptic vocabularies is still not perfectly understood, and there is
a lack of consensus about the existence of a tactile language [35].

2.4 Large-Language Models and UI Transducers

Recent advances have resulted in the introduction of LLMs, au-
toregressive language models built using decoder-only transformer
architectures [103]. LLMs possess language understanding and text
generation capabilities, and are hypothesized to possess emergent
knowledge about domain-specific language as well as ‘world mod-
els’ based on the datasets they are trained on [10, 96], even though
this isn’t yet fully understood [84]. As a consequence of their data
sources, they also possess biases and inaccuracies [37, 64] which can

be reduced using techniques such as data augmentation [75, 105],
filtering [25, 97], and data generation [94, 101].

Despite their limitations, LLMs are widely used today for con-
versational interaction [22, 67], text classification [15, 74], text sum-
marization [95, 110], and math [112]. Moreover, with methods like
prompt engineering and associated support tools [6, 26], LLMs have
been used for increasingly complex tasks, such as social simulacra
[71], web design [3] and virtual reality (VR) scene generation [20].
Using LLMs as transducers for user interfaces (UI Transducers) [8]
shows the potential of using LLMs’ for modalities beyond text. For
example, when acting as digital characters in social simulacra [71],
LLMs were provided text descriptions of the environment and the
characters they played, which they used as context to inform their
actions. When used for VR scene generation, a similar framework
enabled both scene understanding and inter-LLM communication
[20], which allowed the system to control the visuals, physics and
sensor integration for scenes in Unity3D [102]. LLMs are also be-
ing explored for personalization tools, with techniques like using
misaligned responses [42] and smartphone sensor data [109] en-
abling personalization without having to retrain separate models
for different users.

Despite promising capabilities of systems like LLMR [20], re-
searchers have only recently started using LLMs for haptic experi-
ences [54, 79]. This presents an opportunity to explore the use of
conversational LLM systems as an interaction technique for users
to personalize haptic experiences. Such systems may enable end-
user-driven personalization, which has been shown to improve user
experience in conversational interactions [77], or to probe language
use when customizing haptic effects. Prior work comparing the us-
ability of voice interfaces to graphical alternatives shows that they
may provide advantages in certain contexts, but aren’t preferred
in others. For instance, greater performance improvements were
seen for both literate and semi-literate users for a ticket reserva-
tion task when using a visual interface instead of voice interaction
[16] , although the voice interface involved fewer intermediate
steps, allowing users to jump straight to what they wanted. For
smart-home control with robots, Luria et al. [57] found that users
perceived lower control and situational awareness when using their
voice instead of a visual display. More recently, Reicherts et al. [78]
showed that participants prefer voice interfaces over visual ones in
human-human collaborative tasks mediated by virtual agents. Even
as voice interfaces become increasingly common in modern appli-
cations, issues such as learnability, error correction, and feedback
are yet to be thoroughly resolved [63].

3 TACTALK SYSTEM DESIGN

TacTalk is a conversational assistant using the GPT-4o model for
language processing. We use Forza Horizon 5 [2], a popular racing
game as our study context due to the similarity between our inter-
action loop and a driver communicating with their race engineer,
along with the potential for rich, dynamic haptic sensations while
driving. Forza Horizon 5 is accessible to a variety of audiences, has
easy-to-learn controls, and arcade-like physics engine which does
not necessarily require realistic physical sensations, but still avoids
a fantasy setting like Mario Kart.
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In order to provide high-fidelity haptic feedback to users, we use
the DualSense PS5 controller [1] which offers triggers with force
feedback. However, the DualSense controller’s trigger feedback is
not supported in Forza Horizon 5 by default. To work around this
issue, we use the ForzaDSX mod [19] (shown in Figure 2) with the
DualSenseX mod application [24]. This allows us to render haptic
effects on the DualSense controller’s triggers using telemetry data
from Forza Horizon 5. Table 1 shows a complete list of the telemetry-
based parameters exposed by ForzaDSX, and Figure 3 shows how
some of these parameters correspond to in-game elements. Similar
methods have been used previously to synthesize haptic feedback
on custom devices from telemetry data [51].

3.1 Interaction Loop

Users only see the TacTalk front-end, which activates voice record-
ing and processes queries. Figures 4 and 5 illustrate how a user
might interact with TacTalk. During gameplay, a user submits
a query via voice commands and waits for the system to apply
changes to the game. Our implementation enables users to perform
different tasks:

• Exploring haptic feedback settings freely, with no prior idea
of the underlying system parameters.

• Modifying specific haptic feedback parameters, such as vi-
bration frequency or resistance intensity.

• Reverting to a previous configuration.
• Saving/retrieving a configuration.

3.2 System Architecture

The system architecture (Figure 6) consists of four layers:
Input Processing Saying ‘Hey, TacTalk!’ or pressing a but-

ton activates recording. A button-press stops recording. Recorded
queries are then passed to a speech-to-text engine; we use OpenAI’s
Whisper API [68].

Context TacTalk performs two tasks - (1) change the hap-
tic feedback configuration of the game controller and (2) main-
tain a user profile of haptic feedback preferences. Four component
prompts are relevant:

(1) A system prompt specifying the task context, consisting of
the task description, the name of the game, and controller
being used.

(2) The user’s existing preference profile. This helps align the
system to individual preferences by summarizing past inter-
actions.

(3) The existing parameter list, along with example query-
response pairs.

(4) A short sliding window of the conversation history, enabling
short-term memory. We include the last 3 exchanges.

The exact prompts are provided as supplementary material.
Response Two queries are sent - one for updating haptic feed-

back, and one updating the user preference profile based on the
response to the first. Between queries, the parameters from the first
query’s response are validated to prevent invalid configurations.

Update In the context of ForzaDSX, we modify the config.xml
file for the mod and restart it to apply modified settings without

disrupting gameplay. We also update the controller setting prompt
and user preference profile for continuity.

3.3 Deciding Which Settings to Change

The first query passed to TacTalk includes a system prompt, provid-
ing context about the LLM’s task along with the user’s query. The
context prompt includes the task description, past conversation his-
tory, current haptic feedback configuration, and a user preference
profile indicating user preferences from past interactions. It also
lists all parameters, acceptable ranges of values, and explanations
for how each one influences haptic feedback. The LLM’s response
is a JSON object containing a list of modified parameter names,
their previous and new values, and a justification for each change.

While LLMs struggle with complex control tasks [62], prompting
techniques like Chain-of-Thought prompting [106] and In-Context
Learning [23] can help. This lets us explore LLMs to render hap-
tic feedback without requiring large datasets, as needed for other
deep learning approaches. The first prompt thus includes examples
to illustrate the role of different parameters, and the justification
field helps make parameter modifications more predictable and
consistent. We choose relatively abstract parameters compared
to low-/hardware-level haptic feedback parameters. This means
that instead of generating haptic rendering parameters for each
frame (e.g., a PID controller), TacTalk manipulates hyperparame-
ters influencing the quality of haptic feedback. For instance, ‘Grip
Loss Sensitivity’ sets a traction loss threshold for the triggers to
start vibrating instead of generating vibration parameters each
frame. Moreover, mapping vague user queries to a predefined, 17-
dimensional space allows us to look closely at user interactions
and whether user queries actually resulted in corresponding pa-
rameter changes. Such hyper-parameters are commonly used for
customization, whether in commercial APIs (e.g., “sharpness" in
Apple’s AHAP format) or through semantic mappings in research
tools (e.g., [34, 90]). Further, the scarcity of large datasets required
for specialized training makes implementing a fully neural haptic
rendering algorithm difficult in practice.

3.4 Updating the User Preference Profile

Once the LLM responds to the first query, the second query updates
the user preference profile. LLMs are capable of text summarization
and sentiment analysis, and thus this component was a logical step
towards enabling an ’understanding’ of individual haptic vocabular-
ies. The summary produced by TacTalk (1) helps retain information
about user preferences beyond the default 3-exchange conversa-
tion history, and (2) isolates the various adjectives, onomatopoeia,
metaphors etc. mentioned by users. Such profiles may also help
analyze user sentiments or to infer common attributes across user
bases in future applications.

4 TECHNICAL EVALUATION

We conducted (1) an error analysis and (2) a dimensionality re-
duction visualization of responses to multiple queries to evaluate
TacTalk’s consistency. A 51-prompt dataset was used for the evalu-
ations, based on the notion of car performance levels.
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(a) (b)

Figure 2: The ForzaDSX visual interface enabling customized force feedback for the DualSense controller. (a) The 13 parameters for the

brake/left trigger. (b) The 15 parameters for the throttle/right trigger. 17 total parameters were identified as viable for use with TacTalk, shown

in Table 1. All other parameters were found to behave inconsistently, likely due to the complete query approaching the GPT-4o model’s

context-tracking limits.

Parameter Name Targeted Control Acceptable Values Significance

Trigger Mode Throttle + Brake OFF, RESISTANCE,
VIBRATION

Set triggers to passive, render only
uniform resistance or resistance and
vibrations.

Effect Intensity Throttle + Brake 0-100 Overall intensity of rendered haptic
feedback.

Grip Loss Sensitivity Throttle + Brake 0-100 Threshold traction loss required to start
vibrations on triggers.

Forward/Turning
Acceleration Scale

Throttle 0-100 Forward acceleration’s contribution
towards throttle vibration.

Acceleration Limit Throttle 0-100 Proportion of acceleration beyond which
haptic feedback plateaus.

Minimum/maximum
Vibration

Throttle + Brake 0-100 Vibration frequency controls.

Minimum/maximum
Resistance

Throttle + Brake 0-100 Resistance magnitude controls.

Table 1: The parameters exposed by ForzaDSX. All numeric parameters were modified to the 0-100 range since this resulted in fewer LLM-

generated out-of-range errors.
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Figure 3: A screenshot from Forza Horizon 5, showing how ForzaDSX

settings apply in-game. Refer to Table 1 formore details. This camera

is only used for illustrative purposes; a first person view was used

in our study, reducing visual indicators.

4.1 Prompt Dataset

Large datasets for haptics have only recently emerged [90, 98], and
datasets for specialized contexts are even scarcer. Thus, we con-
structed a small 51-query dataset, each of the form ‘I want the car to
feel like a...’ followed by the name or type of a car. Such queries al-
low TacTalk to freely manipulate parameters, as opposed to queries
specifically mentioning technical terms. Based on each car’s per-
ceived performance levels online, we divided the dataset into three
groups - high, average, and low performance, with 17 cars belong-
ing to each group. It is important to note that performance-based
classification is somewhat arbitrary and based on existing biases in
public perceptions of performance. Nevertheless the classification,
although imperfect, still provides clarity to distinguish between
cars. See the supplementary materials for the complete dataset.

4.2 Error Analysis

4.2.1 Methods. We used the following criteria to identify output
errors:

(1) The validity of the returned JSON, including syntax and the
presence of all required fields.

(2) The validity of categorical attributes (the trigger mode must
be set to ‘Off’, ‘Resistance’ or ‘Vibration’).

(3) The validity of numeric attributes, including data type and
range.

(4) The consistency of minimum-maximum pairs (e.g., is the
minimum stiffness less than the maximum stiffness?).

We compute error rates in two conditions:
(1) Using a single prompt to both modify haptic feedback set-

tings and update the preference profile.
(2) Using two separate prompts for haptic feedback settings

and updating the preference profile. In this condition, the
prompt for haptic feedback settings also includes example
query-response pairs.

4.2.2 Results. We repeated dataset queries 50 times, for 2550 total
queries. The initial settings we used are specified in the supple-
mentary material. Overall, using two prompts resulted in 54 errors
compared to 1932 with one prompt - a difference of 73.6%. All 1932

errors involved issues with output structure - for instance, inconsis-
tencies in the returned JSON string (missing fields, inconsistently
including or omitting quotation marks around the output, etc.). Of
these, 1154 errors also involved value range violations. The 54 er-
rors for the two-prompt setup were also related to inconsistencies
in output JSON structure, and of these 14 errors included value
range violations.

Our proposed design for TacTalk is robust, causing output errors
only 2.1% of the time. Since the time of writing this paper, new API
features enable structured JSON output, and thus we believe these
issues will only become rarer over time. TacTalk took an average
of 6.15 seconds per query (minimum = 4.18s, maximum = 15.17s,
SD = 2.63s).

4.3 t-SNE Dimensionality Reduction

4.3.1 Methods. We conducted an evaluation of TacTalk’s response
generation consistency. Using our 51-query dataset, we obtained
system-generated responses to each query and ran t-SNE dimen-
sionality reduction [58] on the generated parameter vectors (learn-
ing rate = 10, perplexity = 20, random initialization).

4.3.2 Results. Figure 7 shows the t-SNE plot. The TacTalk-
generated parameter configurations belong to relatively distinct
clusters for high, average, and low performance vehicles, with little
overlap between the average and low performance vehicle groups.
Some outliers were also observed, such as the Mini Cooper being
classified as a high performance vehicle, or the Fiat 500 being closer
to average than low performance. While these can be labeled as mis-
classifications, there are sports variants of the Mini Cooper, and the
Fiat 500 also has higher performance variants, making the bound-
aries between categories fuzzier. Note that distances do not convey
much information beyond identifying clusters in t-SNE. Even so,
alternative dimensionality reduction methods for non-linear data
such as UMAP [61] have been shown to differ from it only in their
initialization strategies [44, 45].

Our technical evaluation provides evidence that TacTalk behaves
predictably, inferring implicit patterns from user queries and chang-
ing values based on these inferences.

5 USER STUDY

Our study addresses the following research questions:

RQ1 Can an LLM effectively function as a UI transducer for map-
ping natural language user queries to technical haptic feed-
back parameters?

RQ2 How do people personalize haptic feedback using language,
without any assistance in the form of visualization?

RQ3 How does a voice-based personalization interface compare
with an existing slider-based tool (ForzaDSX) offering the
same functionality in terms of usability and perceived cog-
nitive load?

As discussed in section 2, prior work studying voice interfaces
in different contexts shows they may be preferred for certain ap-
plications but problematic elsewhere, and issues like learnability
and error correction persist. Unlike most interfaces reported on
previously, however, TacTalk does not provide any conversational
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Figure 4: TacTalk interaction flow. 1) The user says the wakeword “Hey Tactalk" or presses a key; TacTalk responds with a green microphone

and sound effect. 2) The user poses their query. 3) TacTalk processes the request. 4) TacTalk updates the haptic feedback.

Figure 5: A user may choose to follow up with the system in one of three ways. (A) If the response aligns with their preferences, they may only

ask for minor adjustments. (B) If not, they may look towards other attributes to achieve a preferable setting. (C) They may also revert to a

previous configuration.

feedback. Instead, it receives voice commands and outputs an up-
dated haptic feedback configuration, only playing alert sounds to
indicate when it is listening. We did this to allow the study of nat-
uralistic user queries without introducing vocabulary bias; at the
same time it allows us to evaluate the voice interface’s usability
purely in terms of its ability to convert user queries to desirable
haptic feedback configurations.

5.1 Participants

We recruited 11 participants (10 male, 1 female, mean age = 24.18,
min age = 18, max age = 34, standard deviation = 4.30, all self-
reported) . All participants completed a screening questionnaire
outlining their experience with driving and motorsport (see the
supplementary material). We only included people who had some
racing experience - real-world racing, virtual driving simulators or
even arcade racing games (highly unrealistic games such as Mario
Kart did not count). This ensured that participants (1) could get
familiar with the game relatively easily, and (2) would have an idea
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feedback that is most 
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1. System Prompt 
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# Parameter List # 

# Example Interactions # 

Example Query #1: ... 
Example Response #1: ... 

Example Query #2: ... 
Example Response #2: ... 

# Existing Parameters # 

2. User Prompt 
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# User Query # 

3. Conversation History

1. System Prompt 
# Task Context # 

You're a racing engineer 
analyst... 

2. User Prompt 
# User Preference Profile # 
# New Query-Response Pair #

<?xml version="1.0" ?> 
<configuration> 
    <userSettings> 
        <ForzaDSX.Properties.Settings> 
            <setting 
name="_grip_Loss_Val" 
serializeAs="String"> 
                <value>0.9</value> 
            </setting> 
            <setting 
name="_max_Brake_Vibration" 
serializeAs="String"> 
                <value>20</value> 
            </setting> 
            <setting 
name="_min_Brake_Vibration" 
serializeAs="String"> 
                <value>10</value> 
            ... 
    </userSettings> 
</configuration>

The driver asked for the car to feel like a 
'Toyota GR86,' indicating preference for... To 
achieve this, the minimum and maximum... are 
increased to 70%, 100%, 50%, and 80% 
respectively, to simulate... The driver has 
used adjectives like 'snappy' 'bumpy', and 
'energetic'...

GPT-4o LLM Backend

Figure 6: An illustration of TacTalk’s system architecture, divided into four layers: Input Processing, Context, Response and Update. An

example user query and its associated prompt and configuration strings illustrate how these conceptual layers are implemented. The Response

layer involves making queries to an LLM backend (GPT-4o in our implementation).

Figure 7: A t-SNE visualization of the 51-query dataset. The plot

shows that haptic feedback configurations generated by TacTalk pos-

sess some structure, with vehicles of similar performance clustered

together. Some visible outliers are highlighted.

of their desired haptic experience and some associated vocabulary.
Participants had a variety of experience levels with driving and
motorsport, ranging from people who had played Need For Speed
games to people who had professional go-kart racing experience.

Each study session took approximately one hour, and partici-
pants were remunerated with CA$20 Amazon gift cards for their
time. Written informed consent was obtained prior to each session.
The study was approved by the [anonymized for review] Research
Ethics Board.

5.2 Apparatus

All study sessions were conducted indoors, with participants seated
in front of a PC monitor where the game was displayed. The PC

Figure 8: A participant seated for a user study session, with the

various devices used in the study labelled.

had an AMD ThreadRipper Pro 5975WX 32-core CPU, an RTX 4080
GPU and 64GB of RAM. A second laptop (an M1 MacBook Air)
displaying the TacTalk web interface was placed on the left of the
PC monitor. Finally, participants were provided headphones for
in-game audio and the DualSense controller for gameplay. Figure 8
shows a participant seated for the study. For the entire study, we
used the in-game bumper camera which hid the car from the player,
removing visual bias.

5.3 Tasks

Study sessions consisted of two phases, which we refer to as Free-
Personalization and Car-Classification. The study session
timeline is shown in Figure 9. To further address RQ2 and RQ3, we
first collected participant responses to the Big Five Inventory [76]
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and Player Traits [99] questionnaires. After familiarization with
both the controller and game, participants commenced phase one.

5.3.1 Free-Personalization. Here, participants were allowed to
freely customize in-game haptic feedback, first using TacTalk and
then using the visual ForzaDSX interface, following a within-
participants design. We decided to control interface order (TacTalk
first, then ForzaDSX) rather than counterbalance to reduce priming
for user queries and interaction. Our priorities were RQ1 and RQ2

over a quantitative analysis of RQ3, targeting users’ preferences re-
garding voice-based personalization . Interacting with ForzaDSX’s
visual interface first would expose participants to haptic parameter
names (e.g., Effect Intensity, Minimum Frequency, Trigger Mode,
etc.), which could bias their queries to TacTalk. On the other hand,
TacTalk did not produce any visual or auditory outputs that would
induce vocabulary bias. We believe this potential order effect trade-
off improves the ecological validity of our study of personalization
using TacTalk.

When using TacTalk, participants described their desired haptic
feedback, and based on the system’s response, iterated until they
arrived at a configuration that they felt comfortable with. Similarly,
when using ForzaDSX, participants switched back-and-forth be-
tween the mod’s interface and gameplay, manipulating settings
until they found a comfortable haptic feedback configuration. In
both cases, semi-structured interviews were conducted to evaluate
whether the participants were able to obtain a desirable haptic feed-
back configuration (addressing RQ1), and to understand the intent
behind their queries (RQ2). After using each interface, participants
completed the NASA Task Load Index (NASA-TLX) [27] and System
Usability Scale (SUS) [12] questionnaires (RQ3) before proceeding
to the next phase.

5.3.2 Car-Classification. In the second phase, participants tried
three randomly-ordered haptic feedback configurations generated
using TacTalk and matched each configuration to one of the fol-
lowing vehicles: a “Formula One car", a “double-decker bus", and
an “everyday sedan". This task was performed twice: once without
any added context, and once with added context (order counter-
balanced). The game audio omitted engine noise for this stage to
avoid biasing participants through modalities other than haptics.
Participants first described what they expected each vehicle to feel
like (this was added as context). They then tried out each config-
uration, freely switching between them until they had an answer.
We included this task to better answer RQ1, more specifically the
following sub-questions:
RQ1.1 Can TacTalk generate perceivably distinct haptic feedback

settings?
RQ1.2 Are TacTalk’s generated settings consistent with user expec-

tations even without additional context?
RQ1.3 If TacTalk’s responses do not match user expectations, can

additional context correct this misalignment?

6 QUANTITATIVE RESULTS

6.1 Free-Personalization Results

Due to the failure of the assumption of normality, we ran the
Wilcoxon Signed Rank Test to compare the NASA-TLX and SUS
scores. Overall, we found that participants perceived significantly

Without Preference Context

Vehicle Formula One Car Double-Decker Bus Average Sedan
Sensitivity 0.636 0.636 0.545
Specificity 0.818 0.818 0.772

Accuracy: 60.61%; 95% CI = (42.14%, 77.09%)
With Preference Context

Vehicle Formula One Car Double-Decker Bus Average Sedan
Sensitivity 0.818 0.909 0.818
Specificity 0.909 0.954 0.909

Accuracy: 84.85%; 95% CI = (68.10%, 94.89%)
Table 2: The specificity and sensitivity values measured for the Car-

Classification task, both with and without added user preference

context.

lower mental demand (𝑝 = 0.003), perceived success (𝑝 = 0.043),
perceived effort (𝑝 = 0.003) and perceived frustration (𝑝 = 0.012)
when using TacTalk instead of ForzaDSX. SUS scores (TacTalk:
𝜇 = 66.36, 𝑆𝐷 = 9.51, ForzaDSX: 𝜇 = 47.72, 𝑆𝐷 = 11.32) also yielded
significant differences with a large effect size (𝑝 < 0.01, Cohen’s
𝑑 = 1.78). No significant differences were observed for Big-Five In-
ventory and Player Traits responses. TLX score plots can be found
in the appendix.

6.2 Car-Classification Results

The results of the Car-Classification task are summarized in
Table 2 and Figure 10. In general, participants achieved a higher
classification accuracy when they provided additional preference
context to the system (84.85% vs. 60.61%), although 95% confidence
intervals indicated this was not significant. Interestingly, 6/11 par-
ticipants were able to guess all three classifications accurately even
when the system did not track their preferences, indicating that the
‘world model’ derived from GPT-4o’s training dataset was able to
capture signals related to haptic feedback attributes for different
vehicles. When profiles were considered, these 6 participants also
accurately classified all three cars. Of the remaining 5 participants,
3 increased their accuracy to 100% after profiles were applied. This
suggests that profiles might help with some participants without
hindering those who align with the ‘world model’.

7 THEMATIC ANALYSIS

We collected 5h 53m audio recordings of participants’ study ses-
sions, including interview responses and interactions with TacTalk
and ForzaDSX. Video recordings (2h 12m) were also collected
for consenting participants. We also analyzed user queries and
TacTalk’s corresponding generated responses.

We conducted a reflexive thematic analysis [11], adopting an
inductive style to obtain new insights from the data. Audio was
transcribed using Microsoft Word’s transcription tool then man-
ually cleaned. Initial codes were developed by the first author by
exploring the entire dataset once, then refined by clustering codes
and associated data items in Freeform on macOS. Both authors
participated in refinement of codes and development of themes.
Our work is informed by our experiences and prior knowledge,
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Figure 9: A timeline depicting the flow of a single user study session. The order of tasks was kept the same across all participants, since our

aim was to first understand their approach towards personalization and then reveal the notion of TacTalk keeping track of individual user

preferences.

for example, the first author actively follows motorsport and en-
joys playing simulation racing games. Overall, we identified the
following 5 themes:

7.1 T1: Users favour a few-shot, unidirectional

approach towards personalizing haptics

through conversation

We observed that haptic feedback personalization with TacTalk
typically followed a few-shot process, with only one participant
(P3) posing more than five queries. On average, participants posed
3.5 queries to the system, with four participants (P0, P1, P6, P9) only
making one query. When asked about their perception of the haptic
feedback generated by TacTalk, P0 said ‘I think I’m very content...
I’m pretty accurate.’ This confidence was partially due to their own
ability to phrase a detailed query:

‘I need the accelerator to be a little more firm, so less
sensitive. I also need it to feel like I am accelerating, so
more rumble as I accelerate and as I go faster, as I hit
the accelerator harder, I want it to feel a lot more rough.
For the brake - I want it to be a little less sensitive and
brake a little more smoothly, so I don’t want to feel as
many vibrations, unless I’m hitting the handbrake.’ (P0)

Similarly, P9 called the first configuration TacTalk generated
‘comfortable’. However, their query was less direct - they were
unsure about the expected haptic feedback due to the disparity
between the controller and the full-body sensation of driving a
car (‘I don’t know how much haptic feedback I would expect from
an accelerator...’). They simply asked TacTalk for ‘haptic feedback
that is most similar to a Toyota GR86.’ Hence, while different users
have different initial ideas of desired haptic feedback, TacTalk can
navigate the parameter space efficiently, requiring few interactions
before reaching a desirable setting. TacTalk’s ‘undo’ function was
not used much - none of the participants navigated to previous
settings, even when told about the feature. This suggests partici-
pants found it more natural to continue the conversation without
reverting to past configurations.

These trends in participants’ usage of TacTalk and their sugges-
tions reveal an archetypal process of conversational personalization.
This process is unidirectional, has multiple points of entry and goes
from users describing intended haptic feedback using more abstract
metaphors (e.g., P9’s usage of a Toyota GR86) to specifying minute
details (e.g., P3’s query to make both controller triggers equal in
stiffness and vibration characteristics). We saw that more experi-
enced participants often started this process further downstream,
using fewer abstract metaphors and using more low-level car- or
controller-related vocabulary.

When asked for feedback on possible interfaces for TacTalk,
including a physical ‘push-to-talk’ button on the controller was
favoured over voice-based activation by all participants except two
- P5 (‘I would prefer if there is an inbuilt voice assistant and I can
say “Hey!", like we speak to Siri or Alexa.’) and P6. Participants also
proposed different combinations of TacTalk with ForzaDSX. For in-
stance, P1 proposed initially setting up haptic feedback using visual
sliders and using TacTalk for subsequent fine-tuning ‘because it’s
just a little bit changed, compared to the beginning’; P2 echoed this
point too, citing prior experience with racing simulator games and
real-life motorsport: ‘... I can set up the parameters roughly before I
start. Then I’d talk to the voice interface to adjust more precisely.’ In
contrast, other participants (P4, P9) felt it would be easier to begin
with TacTalk for parameter space exploration using more generic
queries and subsequently fine-tuning using ForzaDSX. P5 even sug-
gested allowing users to set custom keywords as slider parameters
and manipulate them to explore different sensations, essentially
creating a custom slider tool using LLMs. They also proposed an
educational application for children to demonstrate how different
haptic sensations feel while introducing new language.

7.2 T2: A realistic world suggests using

knowledge of real-world haptics

Forza Horizon 5 was described as a game with realistic visuals by
multiple participants (P4, P5, P9, P10). This perceived realism in
turn led to participants drawing from their real-world knowledge.
Depending on their individual experiences, participants referred to
both real-world driving and simulator experiences when describing
their haptic feedback preferences. P10, for instance, said ‘I think
it’s more like what I have felt when I was in a racing simulator... in
the go-kart, that’s the kind of the sensation you have accelerating’
when talking about their preference for haptics on the throttle
trigger. Similarly, some participants (P0, P2, P5) alluded to real-
world driving experience, either from go-karting (P2) or day-to-day
driving (P0, P5) when describing the haptic feedback they expected.

In addition to helping construct queries to TacTalk, real-world
experience also confused participants, seen in the case of P9’s inter-
actions described in T1. They noted form-factor disparity between
the controller and a real car’ steering and pedals as the primary
reason behind their confusion. In this case, P9 resorted to their
‘Toyota GR86’ query as previously mentioned. This ties back into
the unidirectional nature of conversational personalization: starting
from a lack of clarity about their desired feedback, P9 drew upon a
realistic metaphor to explore sensations.

Just as real-world knowledge was used to describe preferences,
participants often used real-world knowledge to justify the outputs
generated by TacTalk. Of course, these included simple comments
about the capabilities of the DualSense controller, such as when
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(a) Without preference context

(b) With preference context

Figure 10: Confusion matrices visualizing performance at matching

haptic feedback to vehicles. Users’ overall accuracy increased from

60.6% in (a) to 84.9% in (b). Percentages consider the total number of

guesses across all users.

P4 mentioned they wanted force feedback on the analog sticks (‘I
don’t think PlayStation controllers have that feature yet’) or when
P2 said that the intensity of the force feedback was hardware-
limited (‘I would like to get some more feedback from both the brake

and accelerator pedals, which may be due to the limitation of the
controller’). However, participants also mentioned personal driving
experiences, such as the observation that the brake pedal in a real
car feels stiffer than the accelerator (P8).

Another interesting observation was the existence of individual
perceptions of realism. We as authors recognize our own ideas of
realism may differ from the participants, adding to the subjectivity
of our analysis. While some participants (P6, P8) referred to their
idea of a realistic driving experience (driving a muscle car, feeling
both resistance and vibrations on the triggers), others referred to
the in-game terrain they were driving on (P5, P7) and one even
referred to their belief that real-world cars have brakes that are less
stiff so as to stop faster (P1).

7.3 T3: Using haptic feedback to represent

changing environment and state is preferred

Similar to participants’ expectations being influenced by the realis-
tic visuals of the game, the haptic feedback was also expected to
follow real-world causal relationships. Participants naturally ex-
pected certain haptic cues to correspond to specific in-game events.
This behaviour was initially seen in participants’ justifications for
different haptic sensations - for instance, P4, P5, P9 and P10 stated
preferences for realistic haptic feedback for Forza Horizon 5 due
to its visual fidelity. This was observed for both the vibrotactile
(‘there is some vibration - screeching tires, I think’) and force feedback
(‘when it lost traction this time, there’s actually a lot more feedback
on the brake’, ‘I’m on a slope, I can feel some sort of resistance here’)
sensations rendered.

Just as participants justified haptic feedback using in-game
events, their preferences for haptic feedback were also shaped
around these events. Some participants (P5, P7) paid attention to
environmental factors when describing their desired haptic feed-
back, mentioning mud, snow, and rain. P7 even commented on
the lack of controls in ForzaDSX for manipulating weather-related
sensations, mentioning they ‘wanted to configure how they (i.e., the
triggers) should behave. Like for example in winter you need winter
tires’. In other cases (P5, P6, P7), track-related factors were men-
tioned, referring to the incline (‘I do feel some kind of resistance
also because this is an incline’) and on/off-road conditions (‘I want
the accelerator to be smoother when I’m off road’). Notably, none of
the participants commented on the haptic feedback combined with
audio - references were mainly drawn from visual in-game events.
Even so, the sounds made by the controller when the triggers vi-
brated were noticed by participants, who either liked (P2, P3, P4)
or disliked them (P5, P7, P10). P10 even derived preferences from
in-game telemetry (‘I want my index finger from the left to have a lot
of shake when I’m accelerating, especially between when I start and
until I go to 100km/h’). Combined, all of these sub-themes inform
the notion of haptic feedback that represents changes in an experi-
ence’s environment and state. Specifically, the visual modality is
favoured over audio in participants’ framing of preferences for hap-
tic feedback, involving both UI elements and actual in-game objects.
Haptic feedback should thus also be personalized by accounting
for changes in the environment and state of the experience.
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7.4 T4: Knowing about ‘reality’ does not imply a

preference for it

Although we saw that all participants drew from real-world knowl-
edge both when describing preferences and justifying TacTalk’s
outputs, this did not necessarily correspond to a preference for
realistic haptic feedback. In P7 and P8’s interactions, real-world
experiences were used as a reference to highlight sources of frustra-
tion, such as increased throttle stiffness when driving off-road, in-
tense vibrations indicating grip loss and increased resistance when
driving up an incline. Similarly, P3 distinguished their preferences
from real life, mentioning that they were looking for something
that ‘feels good for the game’. P5, after converging on their pre-
ferred parameter configuration was then intrigued by TacTalk’s
capabilities and attempted to experiment with different, unrealistic
sensations, asking for the accelerator to feel ‘like a spring’ and ‘as
light as air.’ These two queries were the only observed instances
where a participant made a query to TacTalk that directly referred
to unrealistic metaphors for driving. Even so, this indicates that
the open-ended nature of voice-based interactions might invite
users to play around with different haptic feedback configurations,
irrespective of how easily they can be defined in terms of technical
parameters. Further, this indicates that at a global scale, users prefer
a large, varied haptic parameter space, allowing for both realistic
and unrealistic haptic feedback.

7.5 T5: Domain-specific metaphors are a

valuable tool

Five participants (P1, P3, P4, P8, P9) indicated difficulties composing
queries for the system due to various reasons, from not knowing
what language TacTalk would be able to understand to not having
a clear sense of the haptic feedback they wanted. In such circum-
stances, metaphors proved useful. Similar to P5’s use of ‘spring’ and
‘air’ as metaphors for the accelerator’s behaviour, other participants
used metaphors to describe different scenarios. P6 asked TacTalk to
replicate the sensation of driving ‘a sturdy muscle car’, stating that
they wanted to experience something similar to an old Mustang,
similar to P9’s metaphor of a Toyota GR86.

Other notable cases of metaphor usage included P3 and P9’s de-
scriptions of the haptic feedback they felt - they used onomatopoeic
vocabulary, such as ‘thuk-thuk-thuk-thuk’, ‘buzzy’, and ‘dhuk-dhuk-
dhuk-dhuk’. However, such sounds were not used when talking
to TacTalk, but rather when responding to interview questions. In
fact, P3, P8, and P9 explicitly pointed out not being able to ascertain
whether or not TacTalk could pick up on such descriptions. Thus,
we found that metaphors were valuable to participants when it
came to describing their expectations, even if they did not feel that
a computer would be able to understand their intention. Partici-
pants that did not make use of metaphors instead focused on basic
haptic adjectives, such as stiffness and vibration and directly asked
for them to be modified, as discussed earlier in T1.

We also saw trends in participants’ use of adjectives. The ad-
jectives used referred to various qualities of both vibrotactile and
force feedback including smoothness (‘Make the accelerator vibration
smoother’), hardness/softness (‘Make accelerator vibrations softer’,
‘Increase the brake vibrations to be harder than accelerator vibra-
tions’) and stiffness (‘Make the throttle less stiff’). This aligns with

the perceptual dimensions discussed in prior work by Okamoto
et al. [66] and Hollins et al.[30] excluding the coldness-warmness
dimension, since the DualSense controller does not have thermal
feedback capabilities.

Overall, domain-related metaphors were brought up by partici-
pants most frequently, and more generic, unrelated metaphors were
rare. More specifically, by domain-related we refer to metaphors
commonly associated with cars and motorsport. In fact, P5’s de-
scription of making triggers feel like ‘air’ or like a ‘spring’ were
the only such observed instances. Moreover, when prompted to
describe how they came up with their queries, all participants ex-
cept P7 mentioned metaphors related to cars. P7 mentioned the
experience of riding a bicycle uphill when describing their preferred
stiffness on an incline, an activity slightly related to driving a car.

7.6 Summary

Overall, users consistently favour the use of generic metaphors
in the early stages of personalization, subsequently moving to-
wards low-level details until a desirable configuration is achieved.
Along the way, they draw upon real-world knowledge, even if
they may not necessarily be looking for ‘realistic’ haptic feedback -
the realism of the game world plays a key role in influencing this.
Domain-specific metaphors were the most commonly used tool
for describing preferences (e.g., ‘aquaplaning’, ‘like a Toyota GR86’,
‘drifting around corners’ etc.), with only two recorded instances of
domain-unrelated metaphors being used. In cases such as P5 (‘as
light as air’, ‘like a spring’), a user might wish to play around with
the interface’s capabilities further.

8 DISCUSSION

We now discuss the implications of our study results, combining
both our quantitative and thematic analyses.

8.1 LLMs can make predictable and valid

parameter adjustments for haptics

Our technical evaluations show that TacTalk, an LLM-based appli-
cation, can make valid parameter adjustments for haptic feedback
as shown in the context of a video game. In particular, using a
multi-prompt structure leads to valid results much more often than
a single, monolithic query. This aligns with commonly used tech-
niques such as Chain-of-Thought [106] and few-shot prompting
[42] improve LLM responses.

Through our t-SNE evaluation, we verify the predictability and
consistency of TacTalk’s generated responses. As observed us-
ing a small test dataset, TacTalk generates configurations align-
ing with performance expectations. Although the classification
between high, average and low performance vehicles is somewhat
arbitrary, a visible distinction between classes was still observed.
TacTalk’s ‘misclassifications’ are also interesting. For instance, the
Mini Cooper was placed closer to the high performance cluster
than the Toyota Supra. However, variants of the Mini Cooper are
used for racing, which may have contributed to TacTalk’s response.
Similarly, a Fiat 500 and a Subaru 360 may be considered average
instead of low performance. Our user study further validates our
claims, as most users submitted fewer than 5 queries before finding
a satisfactory haptic feedback configuration. Thus, we observe that
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Figure 11: The gap between mental models of preference and low-level engineering parameters. LLMs, with their ability to understand vague

user language, help bridge this gap, revealing an archetypal few-shot, unidirectional process underlying the personalization of haptic feedback.

The short vertical and curved arrows represent users’ ability to freely enter and exit the process at different stages either converging on a

desirable configuration (shown by the straight arrows exiting the process completely) or honing in on lower levels of abstraction (shown by

curved arrows continuing further down the axis of abstraction).

LLMs can effectively function as UI transducers for haptic feed-
back, bridging the gap between natural language descriptions of
preferences and software-level haptic parameters (Figure 11).

8.2 Conversational personalization may be

more usable than a slider-based interface

As observed through the SUS scores, users rated TacTalk as sig-
nificantly more usable than ForzaDSX. Users noted that TacTalk
was easier to use as it did not require users to learn system-specific
language. Moreover, users highlighted not having to switch con-
texts with TacTalk (unlike ForzaDSX) as something that improved
ease-of-use. The NASA-TLX responses align with this, with users
reporting lower mental demand, perceived effort and perceived frus-
tration, and higher perceived success when using TacTalk compared
to ForzaDSX. Thus, we infer that when personalizing real-time, in-
teractive applications, conversational interactions may help reduce
cognitive load.

8.3 Preference context may improve alignment

with user preferences

A key feature in TacTalk is the user preference profile keeping
track of specific aspects of the haptic experience mentioned by the
user, especially if they differ from TacTalk’s base ‘knowledge’. As
seen in the results of the Car-Classification task, 6 of 11 partici-
pants correctly identified all three vehicle categories without profile
adjustments. After profile adjustments, all 6 of these participants
still correctly identified all three vehicle categories, and 3 of the

others had higher accuracy (all of whom correctly identified all
three vehicle categories), while 2 participants performed the same
in both conditions. Overall, TacTalk seems to produce output that
can be interpreted by some users using the default “world" model
and others by adding profiles. Future quantitative-leaning studies
could study this in more detail with a higher sample size and more
complex task to reduce the risk of saturation.

8.4 Conversational interfaces should use

signposting to make users’ lives easier

As seen in our thematic analysis, users often look to their real-
world knowledge to inform their preferences for haptic feedback
in realistic-looking settings. This may result in confusion due to
haptic modality differences. For example a controller’s joysticks do
not render force feedback, while users may expect a centering force
on the steering wheel. For visual interfaces, using example libraries
can prompt creative user-driven exploration of haptic feedback
[90, 98].

In the context of voice-based interfaces, it is known that interac-
tions range from the use of natural language to humming and other
utterances [80, 81]. Voice-based interfaces for haptic feedback like
Voodle [60] also offer the ability to communicate intended haptic
feedback using the tone and rhythm of utterances. However, people
have trouble gauging the capabilities of voice-based systems unless
explicitly shown examples. Signposting a TacTalk-like system’s
capabilities may, for example, involve visual cues (e.g., diegetic tire
smoke or other visual elements indicating trigger vibrations when
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braking) drawing from users’ tendency to notice in-game track-
/environmental/telemetry factors. The Google Assistant illustrates
examples through advertisements and allowing users to ask for
example queries. In such cases, it is important to ensure the sys-
tem’s responses set realistic expectations - saying ‘I can change your
haptic experience’ is broad and vague, whereas examples like ‘I can
make your brake pedal shake less if that feels better’ or ‘I can make
the car feel less sluggish when driving on sand’ ground the system’s
abilities [72]. Another strategy may involve onboarding tutorials.
For TacTalk, no tutorials were conducted, since the goal of the study
was to study users’ unbiased personalization strategies. Even so,
two users (P6, P9) used TacTalk for suggestions through mimicking
certain cars. Another user (P5) attempted explorations using differ-
ent types of vocabulary and metaphors like ‘light as air’ and ‘like
a spring’. However, most users did not naturally consider asking
for recommendations. In general, with conversational interfaces,
users tend to trust the system more when voice-based feedback is
also included [14]; such outputs may thus be used as another way
to nudge the user towards exploring system capabilties.

8.5 Interfaces enabling personalization of

haptic feedback should employ narrative

framing effectively

In conjunction with signposting system capabilities, the narrative of
the virtual experience is an important consideration. As mentioned
in section 7, users employ metaphors when describing their desired
haptic feedback. However, domain-specific metaphors are much
more commonly used than generic vocabulary. Thus, an interface
enabling personalization should focus on domain-specific narrative
framing, as it can impact how users think about in-game events
and their corresponding haptic feedback [13]. In the context of a
racing game, for instance, it would make sense for a conversational
interface to act as a race engineer, talking about in-game factors
when describing changes made to the haptic feedback. Responding
with ‘I’ve tried increasing your grip loss sensitivity, try using the
e-brake and you should notice the throttle feel more slippery’ not only
describes the changes effected by the system, but also frames the
explanation in a manner that the user can easily understand and
evaluate.

8.6 Conversational interfaces can be a valuable

learning tool

Domain-specific language and jargon often emerges in domains like
motorsport to describe specific concepts. For example, picking up
marbles, trail-braking and aquaplaning are terms that motorsport
fans may know, but newcomers are unlikely to have heard, just
as sommeliers use specialized vocabulary when describing wines.
Prior work has explored the use of conversational interfaces for
education [43], especially learning by teaching such interfaces [48].
However, such interfaces may also be used to actively teach users
and help familiarize them with different aspects of an experience:

• How haptic feedback is rendered on their specific device
• How haptic feedback relates to in-game events and environ-
mental factors

For example, if a user is uncertain about their desired haptic
feedback, a conversational interface can help them learn about the
parameters behind the haptic rendering and subsequently help iden-
tify what they would like to change. This may be direct, with the
interface referring to the controller and its components. However,
narrative framing may help too - using purely narrative-specific
language to communicate with users can make it easier for them
to focus on the virtual experience without switching contexts for
personalization. This may positively affect user involvement/im-
mersion, and may even extend to individuals’ perception of realism.
Since TacTalk’s capabilities are influenced by the language of the
system prompt, what users learn to perceive as realistic may reflect
these biases too. This results in both the user and system being
influenced by each others’ biases, making the phrasing of param-
eter explanations important. For instance, we had to modify the
explanation for the acceleration limit parameter since an earlier
phrasing resulted in nonsensical outputs.

8.7 Conversational personalization seems to be

a few-shot, unidirectional process

Prior work on HX highlights the importance of personalization, but
end-users’ modality-specific approaches towards personalization
are poorly understood. Seifi [87] defined different approaches to-
wards enabling end-user customization, namely choosing, tuning
and chaining, but did not study the processes underlying person-
alization purely through language. In our study, we found that
personalization takes the form of a unidirectional process, illus-
trated in Figure 11. This process has different entry and exit points,
since different users begin with different notions of how in-depth
they want to be and may end early if they achieve their preferred
configuration. However, a clear unidirectional structure was ob-
served, despite TacTalk supporting queries in any order.

More specifically, personalization commences from generic ideas
of the intended experience. This is where metaphors are most valu-
able. In such situations, users expect example libraries or other
suggestion mechanisms to better understand their preferences and
the interface’s capabilities. Asking TacTalk to mimic an existing
vehicle or using other generic metaphors are examples of this. Mov-
ing downstream, we see that users hone in on specific aspects of
the parameter space, attempting to fine-tune them. In our study,
this involved queries directly addressing parameters exposed by
ForzaDSX, such as frequencies. This process is iterative, and is often
where users spend the most time. Overall, these findings align with
prior works exploring personalization of vibrotactile effects [86]. In-
terestingly, despite being informed they could navigate to previous
settings, none of the participants did so. Notably, the phenomenon
of reverting to previous configurations differs from query-repair,
which is common in users of voice interfaces [107]. Our findings
also connect to Lakoff’s idea that metaphors are inherently derived
from our perception and sensorimotor experiences in the real world
[47] - for instance, our experiences of spatial relationships in the
real world help us agree that ‘up’ corresponds to an increase and
‘down’ to a decrease. We saw this carry over to the task of driving a
car in a game, but different users have their own mental models of
desirable haptic feedback given differences in their levels of experi-
ence with driving both virtually and in real life. TacTalk essentially
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attempts to find the closest configuration to individual mental mod-
els, and retains individual preferences over time. We distinguish
TacTalk’s use for navigating haptic feedback settings from prior
work on AI-powered co-creative systems [50], where a model of
agentive flow was proposed - TacTalk was never viewed as a collab-
orator, although some interactions did support playful discovery.
We also acknowledge that our findings are derived from a controlled
lab study, and thus any limitations of human-participant studies
(sample demographics, remuneration etc.) may have influenced our
results.

8.8 Limitations

Our study focused on rich qualitative analysis testing viability
of LLM-based approaches for personalized haptic feedback and
users’ approach towards personalizing haptics through conversa-
tion. As such, to reduce priming, we did not counterbalance in-
terface order. Future studies may remove order effect confounds
to compare conversational and visual slider-based interfaces. Our
screening questionnaire asked participants about their familiar-
ity with motorsport-related vocabulary, such as aquaplaning. This
could have possibly primed participants to use similar terms in their
queries. For example, we observed the use of the terms ‘throttle’,
‘traction’, and ‘drifting’, although other terms such as ‘aquaplaning’,
‘brake bias’, ‘RPM’ and ‘trail braking’ were not used in queries.
Our participant sample had limited gender diversity, with 10 male
and one female participants. This may have been influenced by
the study task context (playing a racing game) and recruitment
methods (advertising via university mailing lists). Prior surveys
have found that only 6% of gamers in the racing genre were female
[108] an issue prevalent in the broader racing landscape [31, 46].
Our focus on collecting a sample with diverse backgrounds with
racing games and motorsport may have further limited our de-
mographic diversity. While we considered gender diversity while
developing TacTalk, recruiting 2 male and 2 female participants for
pilot sessions, future studies may adopt techniques like purposive
sampling to increase diversity of samples along dimensions like
gender. Larger sample sizes for more quantitative studies may also
have a wider range of individuals represented.

9 CONCLUSION

In this paper, we investigated the personalization of haptics through
conversation.We presented a conversational interface, TacTalk, that
enables customization of haptic feedback in real time (section 3).
Technical evaluations and a user study were conducted to vali-
date TacTalk’s functionality and usability. We found that TacTalk
is capable of producing consistent mappings of haptic feedback
configurations, has higher usability and lower cognitive load than
an existing alternative visual interface, and found an archetypal
unidirectional process underlying personalization.

Future investigations into voice-based interactions for haptic
feedback customization could examine different tasks, devices and
interaction modalities to further understand whether the unidirec-
tional nature of conversational personalization can be seen outside
of a voice assistant and whether a single deployment of TacTalk
is generalizable across multiple platforms and experiences. We be-
lieve TacTalk could scale across devices and experiences , making

use of LLMs’ pretrained knowledge base to reduce the amount of
additional finetuning data required. Examples of other relevant
contexts for future work include haptic feedback-enabled assistive
technologies for people with motor control impairments. Further,
longitudinal studies may examine how shifting user preferences
over long-term interactions can be tracked, essentially collecting
per-user prompt datasets and re-aligning haptic parameter map-
pings. Parallel to this, future studies may also explore alternative
architectures to directly manipulate haptic feedback parameters in
real time, based on relevant large scale training datasets.
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Figure 12: A scatter plot illustrating theNASA-TLX scores for TacTalk

and the ForzaDSX visual interface, the mean scores for each NASA-

TLX dimension for the two interfaces, and 95% confidence intervals.

For *: 𝑝 < 0.05, **: 𝑝 < 0.01. Significantly lower Mental Demand,

Perceived Effort and Perceived Success is observed, and significantly

higher Perceived Success is observed when using TacTalk compared

to ForzaDSX.
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